If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2n^2+6n-7=0
a = 2; b = 6; c = -7;
Δ = b2-4ac
Δ = 62-4·2·(-7)
Δ = 92
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{92}=\sqrt{4*23}=\sqrt{4}*\sqrt{23}=2\sqrt{23}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{23}}{2*2}=\frac{-6-2\sqrt{23}}{4} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{23}}{2*2}=\frac{-6+2\sqrt{23}}{4} $
| 8+-7m=15+4m | | X-3÷2=x-2÷4 | | 13w+16w-2+1=-4w+1-2 | | -x+-27=9 | | 24x+12=2(12x+5) | | 7/56x=7/15 | | 80x–(150+45x–65x)=−25+10x–210 | | -30-4.54g=-50 | | 80p–(150+45p–65p)=−25+10p–210 | | 10+n5=250 | | (q+4)=(4q-8) | | -78x-2=2x+4 | | 6.1(x−2)+x=51.7 | | -7x-2=2x+4 | | -1-2x=-2x+1 | | 4/3=-6e-5/3 | | 3(q+4/3)=2 | | .5(r+2.75)=3 | | 0(1)+y=7 | | 3x+2-5x=24 | | 0(3)+y=9 | | -4x-12+2x=-30+40 | | -4x+5-2x=-11 | | 3y-4=6-2y* | | 0(0)+y=9 | | -30-5.54g=-50 | | 8+.16x=12+.11x | | 14x+7=-7 | | -3x^2+18x+10=-5 | | 1x+10=-7 | | 56=⁷/²y | | 1x+14=-7 |